On MCTS Tile Merger for CDN-based Viewport-dependent 360 Video Tiled Streaming

Presenter: Eun-Seok Ryu (esryu@skku.edu)
Jong-Beom Jeong, Soonbin Lee, Eun-Seok Ryu

Multimedia Computing Systems Lab. (MCSL)
http://mcsl.skku.edu
Department of Computer Education
Sungkyunkwan University
Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE standards development activities, all participants shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

On MCTS Tile Merger for CDN-based Viewport-dependent 360 Video Tiled Streaming

Date: 2021-07-19

Author(s): Jong-Beom Jeong, Soonbin Lee, Eun-Seok Ryu

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Phone [optional]</th>
<th>Email [optional]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jong-Beom Jeong</td>
<td>Sungkyunkwan Univ.</td>
<td></td>
<td>uof4949@skku.edu</td>
</tr>
<tr>
<td>Soonbin Lee</td>
<td>Sungkyunkwan Univ.</td>
<td></td>
<td>soonbinlee@skku.edu</td>
</tr>
<tr>
<td>Eun-Seok Ryu</td>
<td>Sungkyunkwan Univ.</td>
<td></td>
<td>esryu@skku.edu</td>
</tr>
</tbody>
</table>
360 Video Tiled Streaming

- High resolution and framerate for high-quality 360 video streaming
 - high bandwidth, high computational complexity
- Tiled streaming based on MCTS for viewport-dependent streaming
 - Bitstream extractor and merger (BEAMer) in CDN
 - Distributed computing for flexible device-adaptive streaming

![Diagram of 360 video tiled streaming system]

<table>
<thead>
<tr>
<th>Requirement</th>
<th>details</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixels/degree</td>
<td>40 pix/deg</td>
</tr>
<tr>
<td>video resolution</td>
<td>11520 × 6480</td>
</tr>
<tr>
<td>framerate</td>
<td>90 fps</td>
</tr>
</tbody>
</table>

Requirements for high quality VR
Source: Technicolor, Oct. 2016 (m39532, MPEG 116th Meeting)
Background

- MPEG System group proposed BEAMer to:
 - Prevent waste of decoding resources (low-quality pictures which are not rendered)
 - Time consumption because of several bitstreams

Implementation of Tile Merger

- In HEVC test model (HM) 16.20, a tile extraction SW is included
 - Tile merging SW is not included
- Used low-level entropy coding objects to implement fast merging
 - HM extractor uses high-level objects -> slower
- HEVC and VVC-compliant versatile MCTS merging
 - Mixed quality, mixed resolution tile/subpicture merging is available

System architecture of tile merger
Mixed Quality Tiled Streaming

- Tiles/subpictures are divided in compressed domain using MCTS
- High- and low-quality MCTS bitstreams at the server-side
- Tile/subpicture QP modification for mixed quality merging

\[
\text{SliceQPDelta} = \text{PPS} \rightarrow \text{QP}() - \text{initQPMinus26} + 26
\]

\[
\text{SliceQP} = \text{SliceQPDelta} + 26
\]

Example of mixed-quality viewport-dependent 360-degree video tiled streaming
Mixed Quality & Resolution Tiled Streaming

- Tiles/subpictures are divided in compressed domain using MCTS
- Mixed-quality and mixed-resolution MCTS bitstreams at the server-side
- HEVC and VVC-compliant versatile MCTS merging
 - Multiple slices aligned vertically in one tile/subpicture
 - Mixed quality, mixed resolution tile/subpicture merging is available

Example of mixed-quality and mixed-resolution viewport-dependent 360-degree video tiled streaming
Experimental Results

- HM 16.20 for encoding, ffmpeg git-2020-03-28-3362330 for decoding
- Intel i5-8250U (4 cores) and 8GB memory on the experimental device
- In merging, half of the tiles were HQ, the others were LQ
 - Quantization parameter (QP) 22 for HQ, 37 for LQ
 - Resolution 4096 × 2048 for HQ, 2048 × 1024 (down-sampled) for LQ
- Mixed quality & resolution saved 37.12% pixel rate and merging/decoding time

<table>
<thead>
<tr>
<th>Method</th>
<th>Tiling</th>
<th>Resolution</th>
<th>No. of merged tiles</th>
<th>QP</th>
<th>Merging time (s)</th>
<th>Decoding time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor</td>
<td>-</td>
<td>4096 × 2048</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>3.014</td>
</tr>
<tr>
<td>Anchor</td>
<td>-</td>
<td>4096 × 2048</td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>2.543</td>
</tr>
<tr>
<td>Mixed quality</td>
<td>2 × 4</td>
<td>4096 × 2048</td>
<td>8</td>
<td>22, 37</td>
<td>0.388</td>
<td>2.743</td>
</tr>
<tr>
<td>Mixed quality</td>
<td>4 × 8</td>
<td>4096 × 2048</td>
<td>32</td>
<td>22, 37</td>
<td>0.392</td>
<td>2.926</td>
</tr>
<tr>
<td>Mixed quality, mixed resolution</td>
<td>2 × 4</td>
<td>2560 × 2048</td>
<td>8</td>
<td>22, 37</td>
<td>0.386</td>
<td>2.048</td>
</tr>
</tbody>
</table>

Merging, decoding performances of mixed quality, mixed quality & resolution tiled streaming
Experimental Results (Cont’d)

- Decoding by HM and ffmpeg without any problems
- At the tile boundaries, no visual errors were observed (successful merging)

Decoding example of mixed quality & resolution tiled streaming
Conclusion

• Motivation
 • High BW & computing time for 360-degree video streaming: tiled streaming can be used
 • Bitstream extractor and merger (BEAMer) in MPEG for:
 ➢ Preventing the waste of decoding resources including time consumption

• Proposed Methods and Insights
 • HEVC bitstream merger for mixed quality & resolution tiled streaming
 • Pixel rate, merging time, decoding time savings compared to the anchor
 • CDN-based system architecture for flexible client-adaptive streaming

• Future Work
 • Experiments on several tiling scenarios will be conducted